

1 Potential of INSAT-3D Sounder Derived Total Precipitable Water 2 Product for Weather Forecast

3 Shailesh Parihar*, Ashim Kumar Mitra and ^aRajiv Bhatla

4

5 *India Meteorological Department, New Delhi-110003*

6

^a*Banaras Hindu University, Varanasi-221005*

7

*Email- shellsalpha@gmail.com

8 Abstract

9 INSAT-3D satellite objectives to upgrade the meteorological observation, monitoring of earth
10 surface atmosphere for weather forecasting and disaster warning. The amount of the water vapor
11 present in atmospheric column in the form of total precipitable water (TPW) derived product from
12 atmospheric sounding system is one such weather monitoring capability in the INSAT-3D payload.
13 The current study is based on INSAT-3D satellite sounder derived TPW and corresponding TPW
14 from radiosonde observations (RS) and National Oceanic and Atmospheric Administration
15 (NOAA), N-18 and N-19 have been used to assess retrieval performances. The RS TPW from 34
16 India Meteorological Department (IMD) stations over the Indian region from May to September
17 2016 has been considered for the validation. The analysis is performed on daily, monthly, sub-
18 divisional and overall basis over the Indian region. On daily and monthly scale against RS TPW,
19 the root mean square error (RMSE) and correlation coefficients (CC) of INSAT-3D TPW are in
20 and around of 8 mm and above 0.8 respectively. However, on sub-divisional and overall scale,
21 the RMSE found to be in the range of 1 to 2 mm and CC was around 0.9 in comparison with RS
22 and NOAA. The spatial distribution of INSAT-3D TPW with actual rainfall observation is also
23 been investigated. In general, INSAT-3D TPW correspond well with rainfall observation however,
24 heavy rainfall events occurs in the presence of high TPW values. Furthermore, a case study with
25 INSAT-3D TPW and ground based Global Navigation Satellite System (GNSS) receiver network
26 have been demonstrated. It is noticed that, INSAT-3D TPW can be considered as a precursor for
27 mesoscale activity very well.

28 The purpose of this study is to investigate the potential use of operational INSAT-3D sounder
29 derived TPW to weather forecast. However, the major source of improvement in INSAT-3D TPW
30 is mainly applying the GSICS calibration corrections (Global Space-based Inter-Calibration

31 System) on Infra-Red (IR) sounder channels at IMDPS, New Delhi, which aims to produce
32 corrections, ensuring the data consistency and allowing them to be used to produce globally
33 homogeneous products for environmental monitoring. The current TPW from INSAT-3D satellite
34 can be utilized operationally for weather purpose and it can also offer substantial opportunities for
35 improvement in now casting studies.

36 **Keywords:** INSAT-3D Sounder, Total Precipitable Water, rain fall.

37

38 1. INTRODUCTION

39 Water vapour is one of the most variable characteristics of the atmosphere. It is an essential factor
40 in climate and weather. It regulates air temperature by absorbing thermal radiation both from the
41 Sun and the Earth; it is directly proportional to the latent energy available for the generation of
42 storms; and it is the ultimate source of all forms of condensation and precipitation. Total
43 Precipitable Water (TPW) Vapor data are potentially significant for weather and climate modeling
44 and prediction. Kuo et al., (1996) found significant improvement in precipitation forecasts when
45 TPW data are assimilated in numerical weather prediction models. Yuan et al., (1993) simulated
46 the utilization of TPW data in monitoring global and regional climate change and found up to 8
47 mm increment in tropical TPW resulting from doubling of atmospheric CO₂.

48 TPW which may be monitored from meso-scale to large scale convective activity and its relation
49 to synoptic circulation systems such as Thunderstorm, monsoonal activities, asymmetries and
50 moisture gradients that aid in interpreting tropical cyclones interaction with dry/moist air by high
51 convective cloud bases. It is the source of the latent heat which is released into the atmosphere
52 during cloud formation. It also dominates the structure of diabatic heating of the earth's
53 atmosphere (Trenberth et al., 2005; Trenberth and Stepaniak, 2003a, b). These parameters vary in
54 time and as well as in space (both vertically and horizontally) throughout the atmosphere. In global
55 atmospheric analyses, the problems come with spatial and temporal gaps. They were impossible
56 to use for climate purposes owing to the huge discontinuities in time as the inevitable
57 improvements were incorporated into the analyses (Trenberth and Olson 1988). This could be
58 possible with accurate temperature and moisture profile either from in-situ observations or
59 remotely sensed data for weather forecasting and nowcasting purposes.

60 The INSAT-3D satellite imager and sounder products major play role in weather monitoring and
61 provides new understanding of the atmospheric process for monitoring weather. Especially vertical
62 profiles of temperature, humidity and ozone content in atmosphere. It improves analytical skill for
63 weather forecasters. However, the INSAT-3D sounder data is being derived for generally clear sky
64 conditions (Ratnam et. al., 2016). Its wide variety of products such as Geopotential height which
65 can be used to analyze the structure of the convective system TPW, can provide details about
66 mesoscale phenomena and tropical cyclone structure, eg. Symmetries and moisture gradients that
67 aid in interpreting tropical cyclones interaction with dry/moist air.

68 In this study, the INSAT-3D sounder TPW product was statistically compared with radiosonde
69 observations and NOAA satellite data over the period May–September 2016. The purpose of this
70 comparison is to investigate the potential use of operational hourly derived INSAT-3D sounder
71 TPW for monitoring of particularly on severe weather phenomenon over the Indian region.
72 However, initial work using INSAT-3D sounder data has been done by Mitra et al. 2015, who
73 compared INSAT-3D data obtained at 10 RS stations of IMD and Ratnam et al. 2016, using 34 RS
74 observations and compared with data from other satellites like AIRS, MLS and SAPHIR and
75 from ERA-Interim and NCEP re-analysis data sets. Which concludes that INSAT-3D provides
76 measurements with very good spatial and temporal coverage over India compared to any other
77 satellites. It is found that there is a large difference between INSAT-3D and other data sets
78 both in temperature and water vapour above 25 °N latitude perhaps due to their geometry. In
79 the present paper, we extended the work with 34 RS stations and taking NOAA data on daily,
80 monthly, sub divisional scale followed by a case study with IMD installed network of GNSS TPW.
81 Furthermore, the spatial distribution of INSAT-3D TPW with actual rainfall observation has also
82 been investigated.

83 2. DATA BASE

84 2.1 INSAT-3D Sounder Scan strategy in IMD

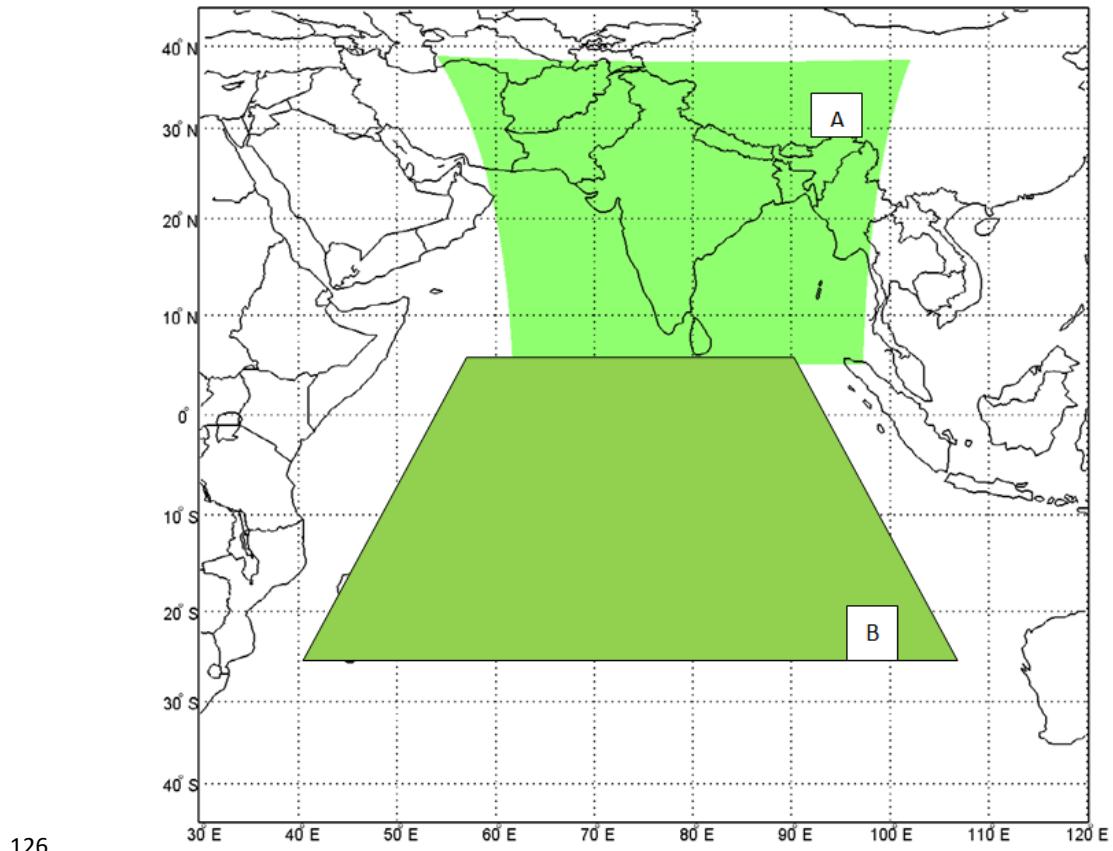
85 2.1.1 INSAT-3D Sounder Specification

86 INSAT-3D sounder is advance weather satellite with improved imaging system and atmospheric
87 sounder. INSAT-3D sounder generating vertical profile of the atmosphere in terms of temperature

88 and humidity. INSAT-3D payloads such as sounder is first time introduce in ISRO satellite
89 mission. INSAT3D sounder has one visible spectral channel and eighteen channels in shortwave
90 infrared (SWIR), middle infrared (MIR) and long wave infrared (LIR) regions. For all channels
91 ground resolution is 10x10km. The INSAT-3D sounder detail can be found on Mitra et.al, 2015.

92 **Table 1Sounder Specification**

Channels (Spectral Range Microns)	Resolution
Visible (0.67)	10X10 Km
SWIR (3.67)	10X10 Km
MIR (6.38)	10X10 Km
LWIR (11.66)	10X10 Km

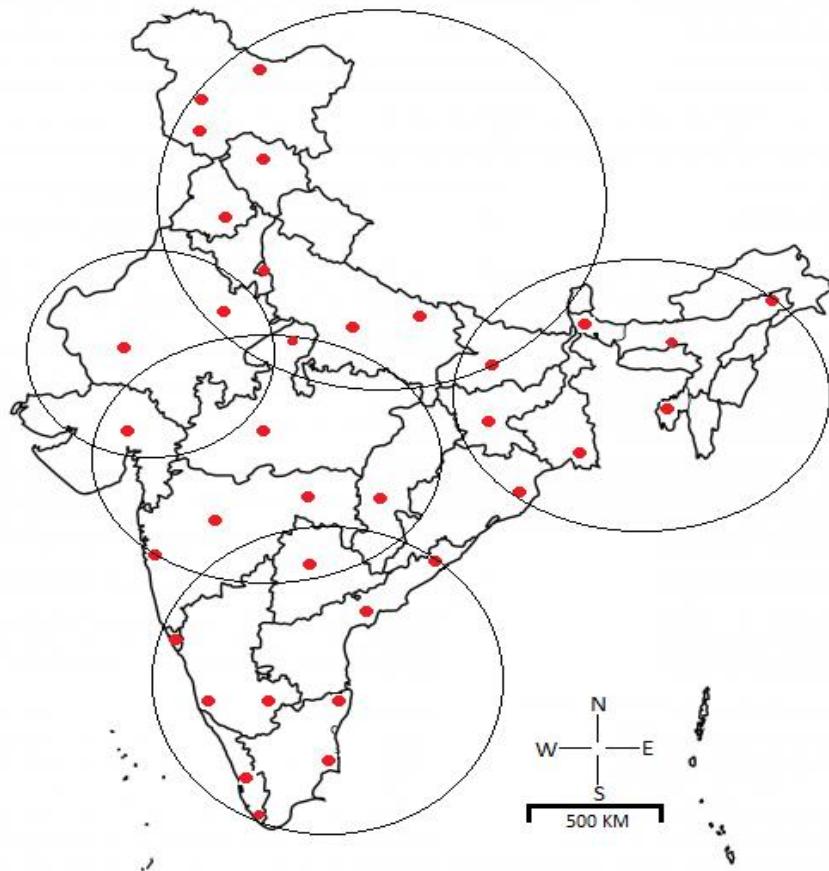

93 *2.1.2 INSAT-3D Sounder Scan Strategy*

94 INSAT-3D retrieval algorithm at IMDPS, New Delhi is designed for retrieving vertical profiles of
95 temperature and moisture from radiances in 18 channels. National Center for Environment
96 Prediction (NCEP) Global Forecast System (GFS) consisting of 12 hour forecast, retrieval
97 algorithm has taken for first-guess input. On account of its higher temporal as well as horizontal
98 resolution, these retrievals provide the significant data on vertical structure of the atmosphere over
99 land and oceanic region. Currently, these information are being obtained from conventional in-situ
100 based methods of observations. INSAT-3D retrieval algorithm is based on clear sky infrared
101 radiances, which includes different absorption bands observed through sounder all channels on an
102 hourly time scale. In the scheme, computation of the hybrid first guess atmospheric profiles using
103 a linear combination of regression retrieval and NWP model forecast are being used (Mitra et al.,
104 2015). The methodology has followed by non-linear physical retrieval procedure (Li et al., 2000;
105 Ma et al., 1999) for first guess consistent with the sounder observations. The another methodology,
106 pressure layer fast algorithm for atmospheric transmittance (PFAAST) radiative transfer model
107 (Hanon et al., 1996) has used for the forward computation of sounder channel radiances along with
108 the Jacobians, which is used in the physical retrieval.

109 Figure-1 shows that every hour over Indian land mass (A) and every 6th hour Southern Hemisphere
110 (B), the sounder data is being processed at IMDPS, New Delhi on an operational basis. This is the

111 simplest scanning mode kept in such a way that sounding over larger region (land+ocean) will be
112 available every hour. Full frame mode scan is $18^\circ \times 18^\circ$ North South (NS) covering the entire earth
113 disc in about 25.7 minutes. Program mode - 18° in East West (EW) direction, while NS coverage
114 can be programmed. Sounder completes sounding in $10 \text{ km} \times 10 \text{ km}$ area in 0.1s and performs
115 space look operation once every 2 minutes. Black body calibration is performed in every 20
116 minutes or on command. INSAT-3D Sounder have a capability to scan in the steps of 64×64
117 pixels. Scanning of a region covering 640×640 pixels that is roughly $6400 \text{ km} \times 6400 \text{ km}$ will
118 take about 180 minutes. This implies that the one step of 64×64 will take approximately 1.8
119 minutes. The INSAT-3D provides hourly observations over Indian landmass and every 6-hour
120 observations over Oceanic region. The uncertainties can occur in quantitative accuracy in the
121 precipitation estimation during nonsummer seasons, where convective precipitation is not
122 dominant (Arkin and Xie 1994). This benefits of these kind of scan strategy is best utilize for the
123 studies of initial convections and genesis of evolution of squall lines and there fine structure
124 (Purdom 1996 a). Therefore, INSAT-3D sounder scan strategy can be used for nowcasting and
125 NWP model assimilation over Indian region.

126


Figure 1. INSAT-3D Sounder scan processing strategy over land and ocean.

127 2.2 Radiosonde Observations (RS)

128 In IMD, upper air observations are made at 43 RS/RW stations, 34 RS/RW stations are being used
129 and 62 Pilot Balloon observatories to provide pressure, temperature, humidity & wind at various
130 levels in the atmosphere up to an altitude of 30-35 kms for RS/RW and up to a maximum altitude
131 of 18 kms employing optical theodolites for PB stations. The types of ground equipment used in
132 RS observatories have been equipped with three types of ground equipment as under;-

133

- 134 • Radiosonde Ground equipment (ECIL/DIGITAL make) along with X band Win
- 135 • d finding Radars (EEC/MULTIMET) at 401 MHz
- 136 • IMS-1500 Radiotheodolite at 1680 MHz
- 137 • SAMEER Radiotheodolite at 401 MHz

138

139

Figure 2. Radiosonde Stations of IMD over India

140 Over all 34 RS stations marked in red color in Figure-2 is taken for the comparison with INSAT-
141 3D TPW.

142 **2.3 NOAA**

143 NOAA's National Environmental Satellite Data and Information Service works for weather
144 community launched Advanced Microwave Sounding Unit (AMSU) was aboard in the National
145 Oceanic and Atmospheric Administration's (NOAA) polar-orbiting satellites. The first AMSU-A
146 was launched on the NOAA-15 satellite on 13 May 1998. NOAA real time data have been
147 downloaded from www.nnoyl.noaa.gov.in.

148 **2.4 GSICS based inter-calibration**

149 There is an on-board blackbody which is responsible for generation of calibration information
150 for all the IR channels in Imager and Sounder payloads. In-orbit readings of blackbody precision
151 temperatures revealed a gradient among the sensor readings which led to inaccuracy in getting
152 the correct blackbody temperature. It was also observed that during satellite midnight, sun-rays
153 from behind the earth enter directly into the sensor and hence lead to increase in blackbody
154 temperatures. This phenomenon also leads to incorrect calibration information generation. In order
155 to provide climate quality products and to improve the calibration information quality
156 GSICS based inter-calibration is used for INSAT-3D/3DR.
157 Thus the channel wise GSICS coefficient found out are absorbed in the Radiometric Correction
158 process. These coefficients are applied on the channel-wise radiances found out by
159 using in-orbit calibration information in the retrieval process.

160

161 3. METHODOLOGY

162 INSAT-3D retrieval algorithm at IMDPS, New Delhi, is designed for retrieving vertical profiles
163 of atmospheric temperature and moisture in the atmosphere from clear sky infrared radiances in
164 different absorption bands observed through the various sounder channels on an hourly time scale.
165 India Meteorological Department (IMD), New Delhi, has adapted sounder retrieval scheme from
166 the operational High resolution Infrared Radiation Sounder (HIRS) processing scheme and
167 Geostationary Operational Environmental Satellites (GOES) algorithms developed by Cooperative
168 Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin, USA (Ma et al.,
169 1999 and Li et al., 2000). In this system, physical and regression based retrievals are employed.
170 Which includes spectral bands in and around the CO₂ and H₂O absorbing bands. These bands
171 having the vertical structure of atmospheric temperature and moisture (Mitra et al. 2015).
172 The Sounder-derived product like Total Precipitable Water (TPW) is the amount of the water vapor
173 present in atmospheric column from the surface of earth to space. Mathematically, if a(p) is the
174 mixing ratio at the pressure level, p, then the INSAT-3D precipitable water vapor W, contained
175 in a layer bounded by pressures p₁ and p₂ is given by

$$176 \text{INSAT3D Precipitable Water Vapor} = \frac{1}{\rho g} \int_{p_1}^{p_2} a dp$$

177 Where ρ represents the density of water and g is the acceleration of gravity and can be found in
178 detail <http://www.imd.gov.in/INSAT-3D/categouge>.

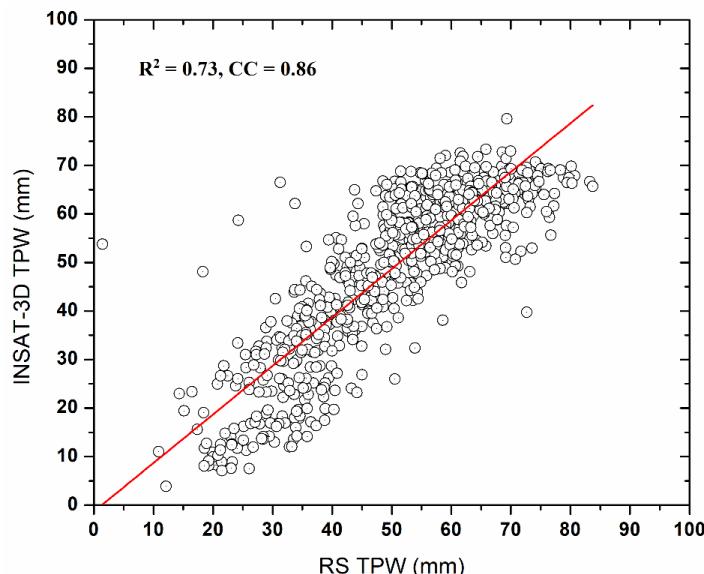
179 In the present study, we are being done RS observations for pairing with their closest INSAT-3D
180 TPW values. The RS observations provide temperature and dew point as functions of pressure at
181 both mandatory and significant levels and these data were obtained from IMD's network. The
182 performance of IMD's GPS radiosonde stations has been very well examined using ECMWF
183 global data monitoring report by Gajendra Kumar et al., (2011).

184 In our evolution methodology, each RS was paired with closest INSAT-3D TPW and patterned
185 according to criteria suggested in Fuelberg and Olson (1991). The collocation criteria for INSAT-
186 3D retrievals with RS and NOAA data are based on the following: (1) The absolute distance
187 between the position (latitude and longitude) of the RS and the INSAT-3D retrievals has been
188 considered as 0.5° (50 Km). This will minimize the differences arising from horizontal gradients.
189 (2) The temporal difference between two sets of data is around ± 120 minutes depending on
190 retrievals and location of the RS station.

191 Furthermore, to improve the quality of sounder derived radiances in INSAT-3D, the Global Space-
192 based Inter-Calibration System (GSICS) corrections have been applied to the INSAT-3D sounder
193 radiances on an operational basis at IMDPS, New Delhi. The GSICS aims to inter-calibrate a
194 diverse range of satellite instruments to produce corrections ensuring their data are consistent,
195 allowing them to be used to produce globally homogeneous products for environmental
196 monitoring. GSICS develops common methodologies to check the quality of sensors operated by
197 various satellite agencies over the worldwide. These satellite organizations works for weather
198 forecasting, climate & atmosphere changing and environmental applications. This is post launch
199 calibration strategy which involves spectral response function of sensors, sensor performances and
200 inter-calibration of satellite sensor after that recalibration of archived data or products of sensors.

201

3. RESULTS AND DISCUSSIONS


202

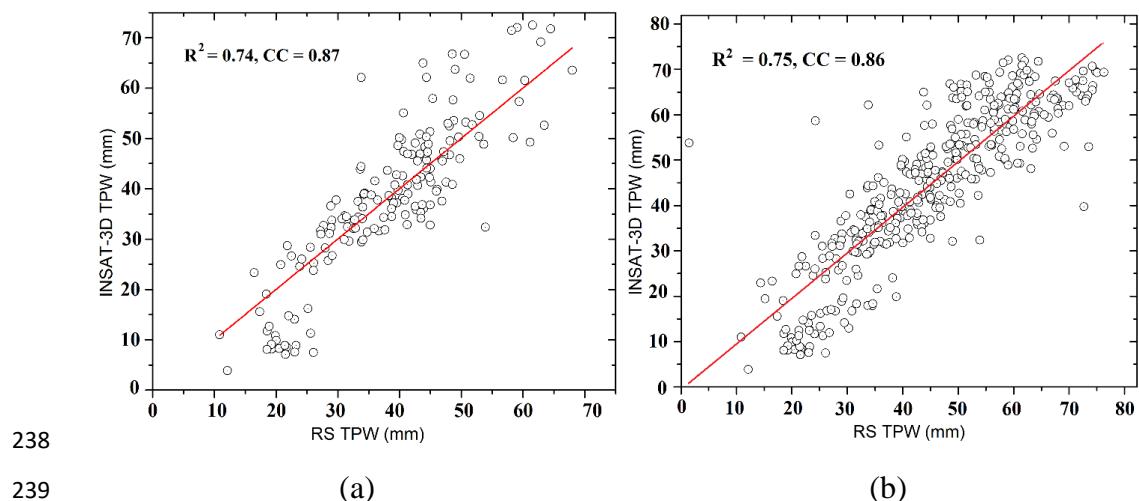
203

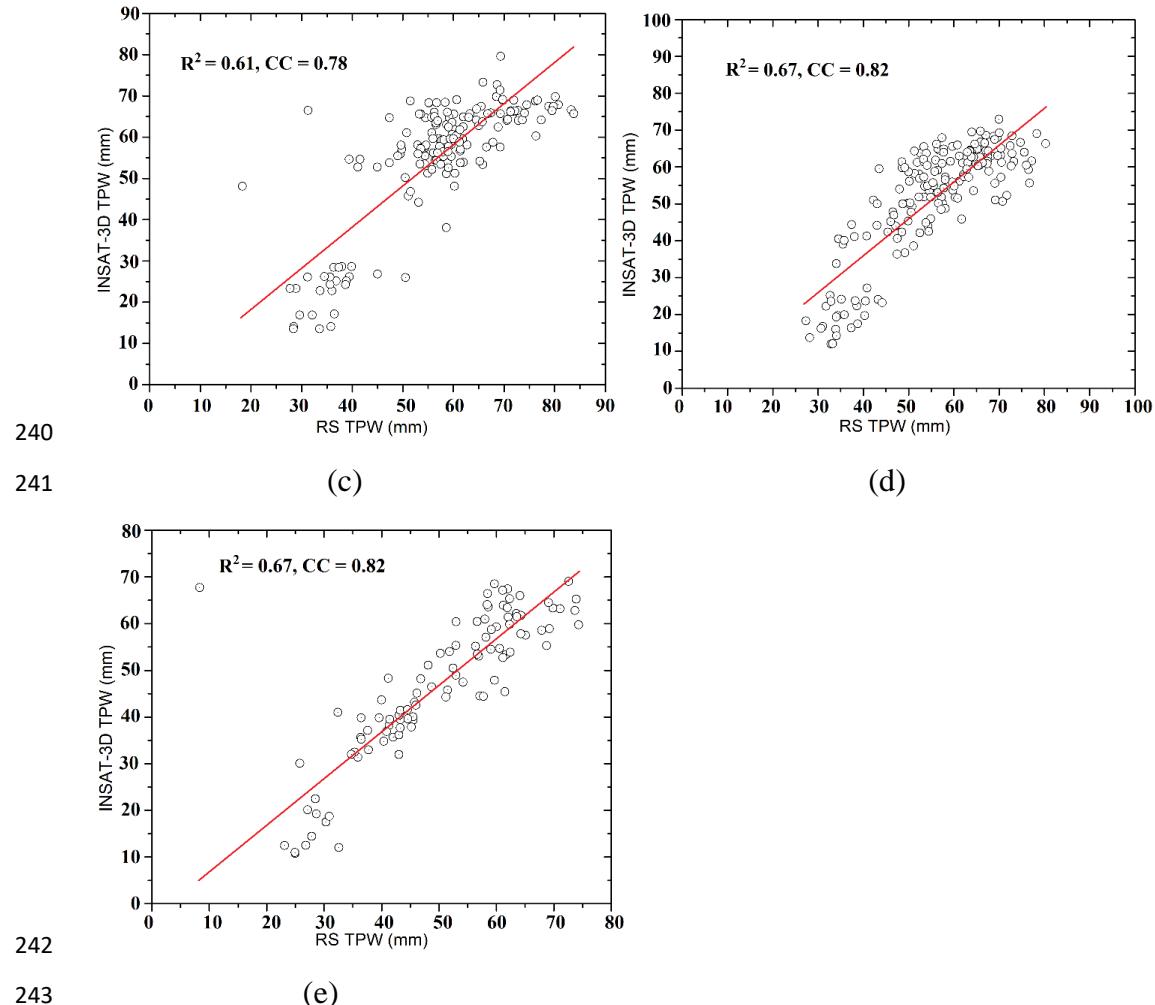
204 **4.1 Comparison of INSAT-3D with RS and NOAA TPW at Daily, Monthly and**
205 **Sub divisional Scale**

206 INSAT-3D derived TPW is being derived over Indian region almost every hour. For verification
207 purposes of NWP model derived precipitable water and usefulness in weather forecast. It is
208 desirable to compare INSAT-3D TPW at different time scale with different sets of data. Thus, on
209 a daily scale, we compared the INSAT-3D TPW with all the collocated datasets against RS TPW.
210 On monthly scale, month average data on collocated points were averaged. For sub-division scale,
211 five different regions categorized according to meteorological subdivisions are, Northern India
212 (NI), Eastern India (EI), Central India (CI), Western India (WI) and Peninsular India (PS) (figure
213 2).

214

215 **Figure 3. INSAT-3D sounder TPW with RS for Day-wise from May to September 2016**


216 Figure 3 shows the comparison of INSAT TPW and RS TPW on daily scale during May-
217 September 2016. On a day to day basis, INSAT-3D TPW agrees well with RS TPW. There is a
218 consistent correlations noticed above 40mm of TPW values whereas less than 40mm TPW values,
219 INSAT-3D underestimates the RS observations. This may be attributed to seasonal variation,
220 orographic of the region and different climatic zone over India. The overall correlation on daily
221 scale was found to be 0.86. In the previous study, Mitra et al. (2015) have reported 0.73 correlations



222 using 10 IMD stations. Figure 4 shows the comparison of INSAT-3D TPW and RS TPW on
223 Monthly scale during May-September 2016. It can be noticed that during monsoon period and
224 specially month of June, July and August, heavy rainfall (above 64.5 mm) occurrence have very
225 well agreement with INSAT-3D TPW values. Mostly INSAT-3D TPW is higher when rainfall
226 occurrence is higher above 40 mm. Monthly correlation was found to be above 0.78.

227 In table 2, INSAT-3D and RS Relation between the standard deviation and the arithmetic mean
228 values indicates that the deviation from the normal distribution cannot be ignored. INSAT-3D
229 coefficient of variation values are high as compared with RS, which indicates that total precipitable
230 water being variable measured by INSAT-3D. The lower the coefficient of variation of TPW
231 amount in July to September, 2017. The Coefficient of skewness values found negative between
232 INSAT-3D and RS measurement, which indicates mean is less than the mode of the data. The
233 correlation coefficient show good agreement with well RMSE for June to September, 2017 except
234 in month of July. The student's t-test has calculated for significance of computed parameter. Which
235 is provided distribution of same is normal for INSAT-3D and RS measured data. This found to
236 good fit between, INSAT-3D and RS TPW.

237

244 **Figure 4. INSAT-3D sounder TPW with RS for (a) May (b) June (c) July (d) August and (e)**
 245 **September 2016**

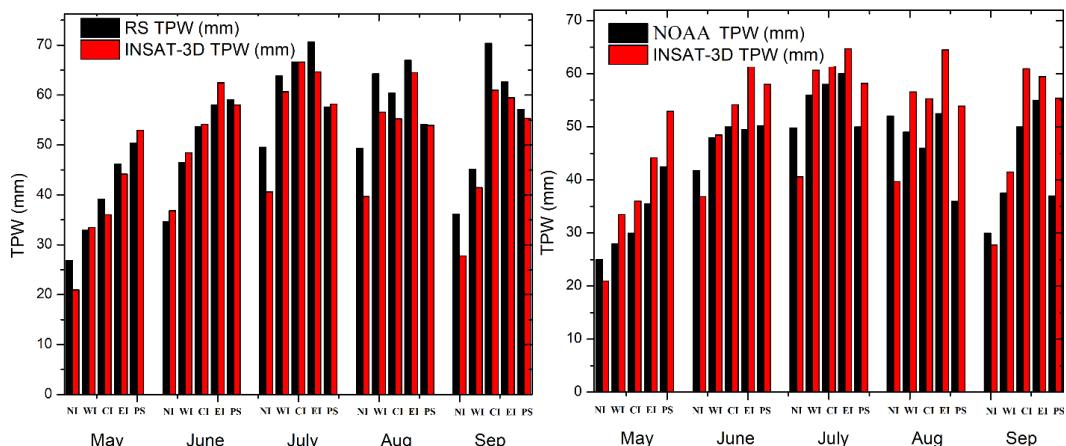
246

247 **Table 2. Statistics and correlation between total precipitable water measured by INSAT-3D**
 248 **and RS**

Mo nth	INSAT	RS	INSAT	RS	INSAT	RS	INSAT	RS	CC	RM SE (mm)	t-test
	-3D		-3D		-3D		-3D				
May	39.36	39.87	15.40	12.51	0.39	0.31	-0.21	-0.10	0.87	7.69	0.359931

Jun	49.75	52.66	16.44	14.16	0.33	0.26	-0.87	-0.57	0.86	8.50	0.049282
July	54.87	60.44	14.59	12.53	0.26	0.20	-1.45	-0.61	0.78	9.31	0.000012
Aug	52.09	57.33	14.71	11.97	0.28	0.20	-1.24	-0.49	0.82	8.73	0.000022
Sep	49.00	54.30	14.14	13.69	0.28	0.25	-1.01	-0.31	0.82	8.79	0.000213

249


250 Figure 5 shows the comparison of INSAT-3D TPW with RS and NOAA TPW on sub divisional
251 scale during May-September 2016. It can be clearly seen from the figures that INSAT-3D TPW is
252 under estimating the RS TPW whereas it is over estimating the NOAA TPW for the entire region
253 during the monsoon period. However, the moisture convergence, advection of moisture and
254 geographical locations of the subdivisions, which occasionally receive heavy to very heavy rainfall
255 due to synoptic scale monsoon circulations or orographic area during summer monsoon season
256 plays the major role in the activity of rainfall over the Indian sub-continent. The areas such as high
257 orographic region like north eastern parts and Jammu and Kashmir and parts of Western Ghats in
258 the west coast of India, have less evaporation rates and high rainfall and the moisture laden that is
259 transported into the region could not be fully captured by the satellite observations. Similarly it is
260 also observed that the rainfall is overestimated in the dry conditions because the falling raindrop
261 evaporates before coming to the surface in dry conditions resulting the over estimation while
262 comparing with actual observation. In contrast, CI and PS, have a good correlations compared to
263 EI and NI. However, opposite trend were found while comparing INSAT-3D TPW with NOAA
264 TPW. INSAT-3D TPW is always higher over NOAA data. One of the reasons is that INSAT-3D
265 sounder derived products were calculated from the radiances sampled every hour while NOAA
266 TPW were based on only two satellite passes with equator crossing times of 0230 and 1430 local
267 time. Therefore, TPW derivation methodology is the same whether the radiometer is on polar or
268 geostationary satellite, the sampling frequency of the radiometer is much higher in a geostationary
269 satellite than polar satellite. In general, sub-divisional comparison revels that the INSAT-3D TPW
270 agrees well RS and NOAA TPW below 23°N whereas the difference is higher above 23°N.

271 In table-3. The standard deviation and the arithmetic mean values indicates that the deviation from
272 the normal distribution, cannot be ignored, which shown deviation according from the data with
273 subdivisions in India for INSAT-3D, RS and NOAA. INSAT-3D coefficient of variation (CV)
274 values are similar with RS, which indicates that total precipitable water being variable, but in case

275 of NOAA CV found higher with respect to INSAT-3D and RS. The Coefficient of skewness values
 276 found negative in case INSAT-3D, RS and NOAA measurement, which indicates mean is less than
 277 the mode of the data. The correlation coefficient (CC) show good agreement with well RMSE
 278 from June to September, 2017 between INSAT-3D and NOAA found 0.96 and INSAT-3D and RS
 279 found 0.87.

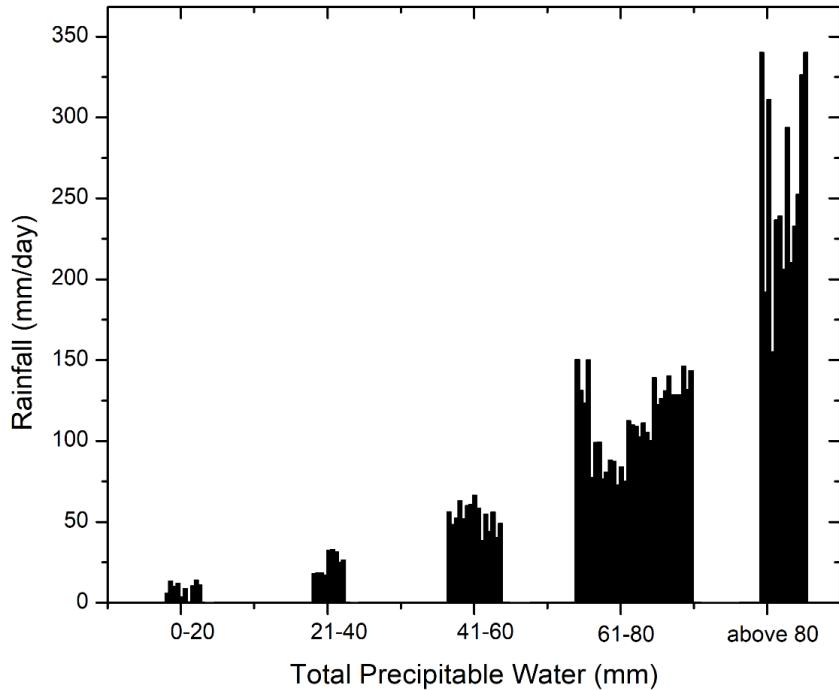
280

281
 282 **Figure 5. Subdivision wise NI, WI, CI, WI & PS from May to September 2016 between**
 283 **INSAT-3D and RS (left), NOAA (right)**

284 **Table 3. Statistics for total precipitable water measured by INSAT-3D, RS and NOAA**
 285 **sub divisional regions of India**

Sub div.	Sensors	Arith metic Mean	SD	Coefficient of Variation	Coefficient of Skewness	NOAA vs INSAT-3D			INSAT-3D vs RS		
						BIAS	RMSE	CC	BIAS	RMSE	CC
NI	NOAA	39.71	11.91	0.30	-0.29	1.3	1.09	0.97	1.22	1.15	0.87
	INSAT-3D	33.16	8.51	0.25	-0.84						
	RS	39.28	9.91	0.25	0.005						
WI	NOAA	43.7	10.98	0.25	-0.63	-0.88	0.88	0.97	0.47	0.77	0.97
	INSAT-3D	48.13	11.04	0.22	-0.26						
	RS	50.52	13.42	0.26	-0.12						
CI	NOAA	46.8	10.35	0.22	-1.22	-1.56	1.23	0.97	0.79	0.83	0.96
	INSAT-3D	54.61	11.51	0.21	-1.20						
	RS	58.58	12.83	0.21	-0.90						

El	NOAA	50.5	9.22	0.18	-1.28						
	INSAT-3D	59.05	8.58	0.14	-1.92	-1.71	1.27	0.91	0.37	0.83	0.91
	RS	60.92	9.47	0.15	-1.00						
PS	NOAA	43.14	6.81	0.15	0.10						
	INSAT-3D	55.68	2.36	0.04	0.05	-2.5	1.55	0.77	-0.002	0.45	0.92
	RS	55.66	3.44	0.06	-1.00						


286

287 **4.2 Comparison of spatially distributed INSAT-3D TPW with Actual Rainfall
288 Observation**

289

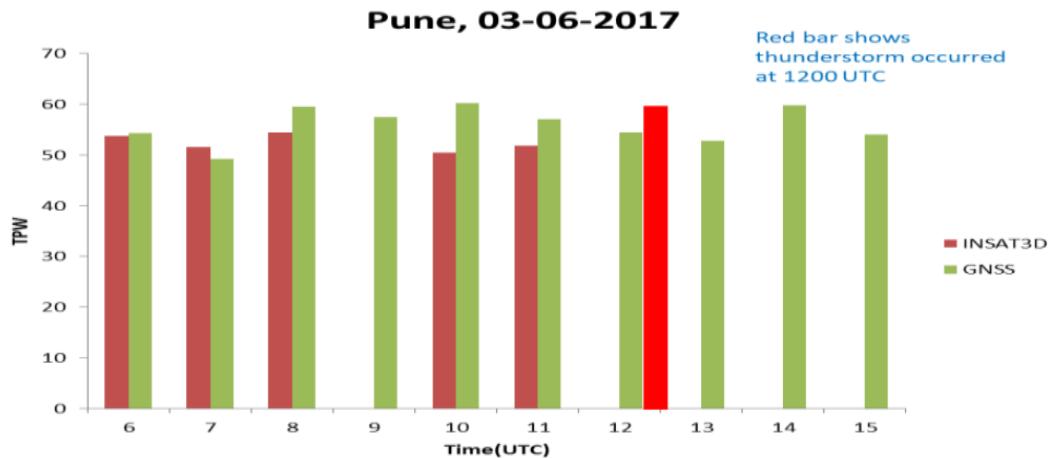
290 Figure 6, shows the overall spatial distribution of rainfall change for different INSAT-3D TPW
291 values during June to September 2016. This figure is constructed for all the daily rainfall amount
292 from actual IMD observation between 0mm to 140 mm occurring over the stations and collocated
293 mean INSAT-3D TPW values between 0mm to 90mm. It can be seen from the figure 6 that higher
294 rainfall amount is accounted with higher INSAT-3D TPW values. However, atmospheric
295 constituents and synoptic scale of monsoon conditions are an important factor when considering
296 the occurrence of rainfall and satellite derived TPW. It is well demonstrated from the figure 6, that
297 the heavy (60-80 mm) and heavy to very heavy rainfall (above 80mm) is very well matching with
298 the higher TPW values. This can be related to the fact that the heavy rainfall occurs in the presence
299 of higher TPW values (Wu et al, 2003). However, for the light to moderate rainfall amount (less
300 than 40 mm) INSAT-3D TPW is not picking up the intensity, this may be attributed to the failure
301 of capturing moisture divergence and subsidence in the lower levels of the atmosphere by the
302 geostationary satellites due to its resolution. The ground resolution of INSAT-3D sounder is
303 10km. These limitations of sounders put the emphasis on high horizontal resolution (better than
304 10km), and on high vertical resolution (about 1km). This will provide frequent information on the
305 3D structure of atmospheric temperature and humidity, for the whole Earth disk seen by the
306 satellite (except in and below clouds). They will be used, together with the imagers, to produce
307 high resolution clouds or water vapour features, to track rapidly evolving phenomena. They are
308 also designed to have an important role in the frequent observation of atmospheric chemical
309 composition.

310

311

312 **Figure 6. Overall spatial distribution of rainfall with INSAT-3D TPW**

313


314 **4.3 A case study of INSAT-3D TPW with ground base GNSS TPW**

315 In this case study, hourly INSAT-3D sounder derived TPW, and GNSS TPW were analyzed for a
316 thunderstorm event occurred at Pune on 03.06.2017 of 1200UTC. The advantage of GNSS is
317 having access to multiple satellites, redundancy and availability at all times. Though satellite
318 systems don't often fail, if one fails GNSS receivers can pick up signals from other systems.

319 Figure 7, shows the hourly comparison between INSAT and GNSS TPW. The red bar shows the
320 time of occurrence (i.e., 1200 UTC) of thunderstorm over Pune city. It was observed from the
321 satellite imageries that initial convection development starts at 0600 UTC with multiple significant
322 convection seen over the area. It can be seen from the figure-7 that the INSAT-3D TPW is showing
323 the higher TPW values around 53 mm in comparison with GNSS TPW of 54 mm at 0600 UTC.
324 The higher TPW of INSAT-3D continues up to 1100 UTC with agreement with GNSS TPW. The
325 thunderstorm was reported at 1200 UTC. Since INSAT-3D retrieval cannot be made over cloudy

326 region, the TPW observation was not available after the 1200 UTC. However, prior to the event
327 INSAT-3D TPW can be considered as a precursor for mesoscale activity.

328

329 **Figure 7. A thunderstorm weather event on Pune (18.52°N 73.85°E) on 03.06.2017**

330

331

CONCLUSION

332 In the present study, INSAT-3D satellite sounder derived TPW and corresponding TPW from
333 radiosonde observations (RS) and National Oceanic and Atmospheric Administration (NOAA) N-
334 18 and N-19 have used to assess retrieval performances covering the entire season with
335 geographical region over the Indian sub-continent. The INSAT-3D derived TPW has also very
336 well picked the general feature of monsoon at daily as well as monthly scale. Most of the region
337 except north eastern parts and north western region the magnitude is slightly differ. This may be
338 attributed to the orography area of that region as well as geometry. It is also to be mentioned that
339 the INSAT-3D TPW on monthly scale show very good agreement with the sub divisional scale
340 rainfall observational pattern indicating good reliability to use the INSAT-3D TPW for
341 advancement of the monsoonal pattern. The advantages of INSAT-3D TPW are the availability of
342 the real-time data over the Indian region due to higher spatial and temporal resolution as compared
343 to polar orbiting satellites. The quality of the TPW from INSAT-3D wills substantial improves the
344 now-casting as well as the rainfall prediction by assimilating into the NWP model. Furthermore,

345 the spatial distribution of INSAT-3D TPW with actual rainfall observation is also been
346 investigated and found that heavy rainfall events occur in the presence of high TPW values.

347 The improvement observed in the current INSAT-3D sounder products specifically TPW is mainly
348 attributed to the GSICS bias corrections applied to the sounder radiances at IMDPS by SAC/ISRO,
349 Ahmadabad. This study will provide the reasonable interpretation and quantitative benefit to NWP
350 and can also offer substantial opportunities for improvement in now casting studies.

351

352 ACKNOWLEDGMENTS

353 Authors are very much grateful and rendered by Director General of Meteorology Dr. K. J.
354 Ramesh, and given valuable suggestions. We specially thank C.M Kistawal and P. Thapliyal for
355 the improvement of INSAT-3D sounder retrievals specially the applying of the GSICS corrections
356 at IMDPS for the improvement sounder retrievals and their technical inputs. First authors also
357 thankful to NOAA for providing us required data and GSICS members for providing technical
358 support.

359 REFERENCES

360 Ackerman, S. A. and G. L. Stephens, 1987: The absorption of solar radiation by cloud droplets:
361 An application of anomalous diffraction theory. *J. Atmos. Sci.*, 44, 1574-1588.

362 Gajendra Kumar, Ranju Madan, K.C. Sai Krishnan & P. K. Jain, 2011, Technical and operational
363 characteristics of GPS radiosounding system in upper air network, *MAUSAM*, 62, 3, pg 403-416

364 Hannon, S., Strow, L. L. and McMillan, W. W., 1996, “Atmospheric Infrared fast transmittance
365 models: A comparison of two approaches”, *Proc. SPIE – Int. Soc. Opt. Eng.*, 2830, 94-105.

366 Kuo, Y. H., Zou, X. and Guo, Y. R., 1996, “Variational assimilation of precipitable water
367 using a non-hydrostatic mesoscale adjoint model”, *Mon. Wea. Rev.*, 124, 122-147.

368 Li, J. and Huang, H. L.: Retrieval of atmospheric profiles from satellite sounder measurements by
369 use of the discrepancy principle, *Appl. Optics*, 38, 916–923, 1999.

370 Li, J., Wolf, W. W., Menzel, W. P., Zhang, W., Huang, H. L., and Achtor, T. H.: Global soundings
371 of the atmosphere from ATOVS measurements: The algorithm and validation, *J. Appl. Meteorol.*,
372 39, 1248–1268, 2000.

373

374 Ma, X. L., Schmit, T., and Smith, W.: A non-linear physical retrieval algorithm – Its application to
375 the GOES-8/9 sounder, *J. Appl. Meteor.*, 38, 501–503, 1999.

376

377 Mitra, A., Bhan, S., Sharma, A., Kaushik, N., Parihar, S., Mahandru, R., and Kundu, P. K.: INSAT-
378 3D vertical profile retrievals at IMDPS, New Delhi, *Mausam*, 66, 687–694, 2015.

379

380 Ratnam, M. V., Kumar, A. H., Jayaraman, A.: Validation of INSAT-3D Sounder data with in-situ
381 measurements and other similar satellite observations over India, *J. Atmospheric measurement*
382 techniques, 9, 5735–5745, 2016.

383

384 Susskind, J., Barnet, C., Blaisdell, J., Iredell, L., Keita, F., Kouvaris, L., Molnar, G., and Chahine,
385 M.: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced
386 Microwave Sounding Unit as a function of fractional cloud cover, *J. Geophys. Res.*, 111, D09S17,
387 doi:10.1029/2005JD006272, 2006.

388

389 Trenberth, K. E. and Stepaniak, D. P.: Seamless poleward atmospheric energy transports and
390 implications for the Hadley circulation, *J. Climate*, 16, 3706–3722, 2003a.

391

392 Trenberth, K. E. and Stepaniak, D. K.: Covariability of components of poleward atmospheric
393 energy transports on seasonal and inter annual timescales, *J. Climate*, 16, 3691–3705, 2003b.

394

395 Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in column-integrated
396 atmospheric water vapor, *Clim. Dyn.*, 24, 741–758, 2005.

397

398 Wu, P., J.-I. Hamada, S. Mori, Y. I. Tauhid, M. D. Yamanaka, and F. Kimura, 2003: Diurnal
399 variation of precipitable water over a mountainous area of Sumatra Island. *J. Appl. Meteorol.*,
400 42, 1107–1115

401

402 Yuan, L., Anthes, R., Ware, R., Rocken, C., Bonner, W., Bevis, M. and Businger, S., 1993,
403 "Sensing climate change using the global positioning systems", J. Geophys. Res., 98, 14,925-
404 14,937.